Group 16

Design and Development of Optimized Flow Channels for an Alkaline Membrane Fuel Cell Educational Kit

Advisor/Sponsor: Dr. Juan Ordonez

Tristan Walter Terry Grandchamps Trevor Gwisz Oluwafemi Ojo

Re-Introduction to AMFC Operation

- Converts chemical energy into electric potential energy
- Requires an electrolyte solution, hydrogen gas, and oxygen gas or air for operation
- Generates electricity with no harmful Bi-products
- Most electrically efficient of all the fuel cells (60% efficiency)
- Safe operating temperature for educational kit (70-100 Celsius)

Group 16

Slide 2 of 13

Fig. 1: Fuel Cell Operation

Table 1: Operation of various fuel cell types

Fuel Cell Type	Operating Temperature (°C)	Electrical Efficiency
Alkaline (AFC)	70 – 100	60%
Polymer Electrode Membrane (PEM)	50 – 100	25 – 58%
Phosphoric Acid (PAFC)	150 – 200	>40%
Molten Carbonate (MCFC)	600 – 700	45 – 47%
Solid Oxide (SOFC)	600 - 1000	35 – 43%

Flow Configurations

- Gas diffusion rates depend on flow configurations
 - Effective water removal flooding decreases diffusion
 - ► Flow distribution high current density increases diffusion

Current Set up

- > 200 mL Electrolysis Cylinders
 - Inconsistent and slow feeding rates
 - Poor water removal
- 1 Configuration
 - Cannot experimentally compare
- Hazardous features

Group 16 Slide 3 of 13

Fig. 3: Basic electrolysis set up

Fig. 2: Fuel cell flow configurations

Fig. 4: Current parallel plate Tristan Walter Design and Development of AMFC Kit

Problem Statement

"The current AMFC setup does not effectively allow students to test the effects of flow configurations on fuel cell performance."

Goal Statement and Objectives

"Deliver a safe and functioning educational alkaline membrane fuel cell kit that demonstrates the effects of flow configurations on the fuel cell's performance for educational use"

Group 16 Slide 4 of 13

Objectives

- Include parallel, serpentine, and interdigitated configurations to compare power outputs
- A standard operation procedure and a product specification sheet included in the kit
- A series of demonstration experiments will be designed and conducted with explanations of why certain configurations perform better than others
- > Develop a model for potential commercialization of the kit.

Plan and Approach

Communication

- Team has enrolled in related class towards project with advisor/sponsor
 - Need to increase communication between team and advisor/sponsor
 - Increases face to face contact for improved scheduling
- Seek help with Brazilian team

Modifications

Group 16

Slide 6 of 13

- Advanced fuel delivery
 - Electrolysis machine (Hydrogen) and air pump (Oxygen)
 - Increases safety
 - Experimental consistency
- Case packaging
 - Adjust how new components will fit in travel case

Fig. 5: Example of Old Electrolysis Setup

Fig. 6: Image of HydroFILL filling HydroStick Pro

Gantt Chart

				wember 1		December 1	1	January 1		Februa	ary 1	March	1	April 1
Task Name 👻	Duration 👻	Start 👻	Finish	11/6	11/20	12/4	12/18	1/1	1/15	1/29	2/12	2/26	3/12	3/26
Background Research	13 days	Wed 9/21/16	Fri 10/7/16											
Discuss Design Ideas	26 days	Wed 9/14/16	Wed 10/19/16											
Gain Access to CAPS Laboratory	9 days	Mon 10/10/16	Thu 10/20/16											
Communicating with machine shop	26 days	Thu 11/3/16	Thu 12/8/16											
Web Design	14 days	Wed 10/19/16	Mon 11/7/16											
Begin Testing of Existing Design	13 days	Mon 11/21/16	Wed 12/7/16											
Communication with Brazilian Team	60 days	Sun 12/11/16	Thu 3/2/17											
Meet with Advisor/Sponsor	2 days	Thu 1/19/17	Fri 1/20/17											
Communicate with Machine Shop	1 day	Fri 1/20/17	Fri 1/20/17											
Purchase Components	14 days	Sun 1/22/17	Wed 2/8/17											
Machine New Flow Channels	7 days	Sun 2/12/17	Mon 2/20/17											
Optimize Gas Delivery System	9 days	Tue 2/21/17	Fri 3/3/17											
Optimize Electrolyte Membrane	9 days	Tue 2/28/17	Fri 3/10/17										l	
Test Flow Configurations	9 days	Sun 3/12/17	Wed 3/22/17											
Conduct Mathematical Analysis	9 days	Sun 3/12/17	Wed 3/22/17											
Finalize Kit	10 days	Thu 3/23/17	Wed 4/5/17											į –

Table 2: Gantt Chart used to organize and plan project

Group 16 Slide 7 of 13

Terry Grandchamps Design and Development of AMFC Kit

Progress Made

- Made contact with team in Brazil
- Fuel delivery issues clarified
 - Basic electrolysis method inconsistent
 - Hydrostik Pro and air pump
 - Includes electrolysis
 - Regulated flow
 - Increase safety
- Ordering correct stainless steel plates
- Drawings brought to machine shop
 - Meeting on Friday 1/20

Por um futuro sustentável, renovável e tecnológico.

Fig. 7: Brazilian team's lab

Terry Grandchamps Design and Development of AMFC Kit

Group 16 Slide 8 of 13

Failure Analysis

Table 3: Failure Analysis for educational kit

#	Name	Failure Mode	Cause	Symptoms and Local Effects	Method of Detection	Effect on System	Remarks and other Effects
1	End Plates	Oxidation, Warped, Damaged	Corrosion, Poor Thermal Management, Neglect	Reduced Diffusion, Leaking, Poor Water Vapor Management	Visual Inspection Reduced Power Generation		Could pose a health hazard
2	Membrane	Reduced efficiency	Carbon Dioxide Poisoning, Overuse	Uneven Current Distribution	Measuring power output	Reduced Power Generation	Requires Replacement
3	Gas Delivery Tubes	Cracked, Leaking	Dry rot, Loose Connection	Leaking Gas, Reduced Diffusion	Visual Inspection Reduced Power Generation		Requires Replacement
4	Electrode Sheets	Salt Build Up, Damaged	Carbon Dioxide Poisoning, Misuse	Uneven Current Distribution, Uneven Heat Distribution	Visual Inspection, Power Output	sual Inspection, Power Reduced Power Output Generation	
5	Electrolysis Components	No Gas Production	Dead Battery, Poor Electrical Connections	No Bubbling	Visual Inspection, Testing Battery	No Power Generation	Requires Replacement
6	Hydrostik	Electrolyzer stack poisoning	Metal ion poisoning	Red light indicator	Visual inspection	Troubleshoot mode	Requires malic acid fill to neutralize ions

Group 16 Slide 9 of 13 Terry Grandchamps Design and Development of AMFC Kit

Challenges

- > Developing a method for supplying hydrogen and oxygen to the fuel cell
 - Direct electrolysis feed versus stored compressed feed
- Communication with sponsor/advisor
- Communication with Brazilian Team
- Machining old plate for alligator clips
- The use of old plate when comparing to new plates during testing

Terry Grandchamps Design and Development of AMFC Kit

Future Purchases

- Stainless steel for plate configurations
- Fluke 116 Multimeter to be included in the kit
 - Capable of testing voltage, amperage, and temperature
- Load box
 - Change resistances
 - Calculate current and power output for experimental results
- Fluke 80AK-A Thermocouple adapter
- Fuel delivery

Group 16

Slide 11 of 13

- Petco 9902 air pump
- Hydrofill Pro station
- Safety feature components

Fig. 8: Petco 9902 air pump

Summary

- Addition of new fuel feed components
 - Incorporates electrolysis method
 - Consistent
 - Safe
- Overall goal and objectives and goal has maintained consistent
- Overcome challenges
 - Better communication with peers
- ► Future purchases
 - Manufacturing parts
 - Testing

Group 16 Slide 12 of 13

Questions

